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We report measurements of the Nusselt number, Nu, in turbulent thermal convection
in a cylindrical container of aspect ratio 4. The highest Rayleigh number achieved
was Ra = 2 × 1013. Except for the last half a decade or so of Ra, experimental
conditions obey the Boussinesq approximation accurately. For these conditions, the
data show that the log Nu–log Ra slope saturates at a value close to 1/3, as observed
previously by us in experiments with smaller aspect ratios. The increasing slope over
the last half a decade of Ra is inconclusive because the corresponding conditions
are non-Boussinesq. Finally, we report a modified scaling relation between the plume
advection frequency and Ra that collapses data for different aspect ratios.

1. Introduction
Considerable attention has been given to turbulent Rayleigh–Bénard convection,

in part because it is the paradigm for diverse natural phenomena and industrial
applications. Rayleigh–Bénard convection occurs when a layer of fluid is sufficiently
heated from below and cooled from above that a macroscopic flow is generated,
augmenting the molecular transport of heat. Natural phenomena usually occur at
very high Rayleigh numbers (Sreenivasan & Donnelly 2000). The Rayleigh number is
the characteristic non-dimensional measure of the temperature difference prescribed
across the fluid layer, and is defined by Ra ≡ α�TgH 3/νκ , where α is the isobaric
thermal expansion coefficient of the fluid in the container, �T the temperature
difference between the bottom and top walls, g the acceleration due to gravity and H

the vertical dimension of the convection cell; ν and κ are, respectively, the kinematic
viscosity and the thermal diffusivity of the fluid. The use of low-temperature helium
gas as the test fluid has allowed Rayleigh numbers up to 1017 to be reached in the
laboratory (Niemela et al. 2000), much higher than had been previously achieved (Wu
1991; Wu & Libchaber 1992).

However, the experiment of Niemela et al., and others like it (Chavanne et al. 2001;
Roche et al. 2001), had a rather small value of 1/2 for the diameter-to-height ratio,
or the aspect ratio Γ . While it is advantageous to keep the height H large to attain
large Ra, it is technically difficult in terms of construction and expensive in terms
of helium consumption to increase lateral dimensions correspondingly. Thus, in the
experiments just cited, one of the principal features of large-scale flows in nature has
been approached, namely high Ra, but the other important feature, namely the large
lateral extent, has been abandoned. To remedy this situation somewhat, Niemela &
Sreenivasan (2003a) increased the aspect ratio to unity while still achieving an Ra of
2 × 1015, which was more than four orders of magnitude higher than that reported
earlier for the same Γ in the pioneering experiments of Wu & Libchaber (1992). There
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is no doubt that an even higher aspect ratio would be desirable if the measurements
are to be of interest to geophysicists. The present work, combining aspect ratio 4
with a high Ra of up to 2 × 1013, fills this requirement quite well, although it is
not reasonable to claim that it fully approximates a laterally unbounded layer. The
combination of moderately large aspect ratio and very high Ra is indeed rare. The
closest attempt is that of Wu & Libchaber (1992), who achieved an Ra of almost 1010

with Γ = 6.7.
Mention should be made of measurements covering a large range of Ra from several

apparatus of varying aspect ratio (e.g. Goldstein & Tokuda 1979), and those covering
lower ranges of Ra but with higher aspect ratio (e.g. Nikolaenko et al. 2005), and
those others with low Ra and low Γ with considerable flow details mapped out (e.g.
Qiu & Tong 2001; Zhou & Xia 2002). Also to be mentioned are numerical simulations
of Amati et al. (2005) which have pushed the Ra range to increasingly higher values,
and the important attempt of Grossmann & Lohse (2002) to understand the flow
theoretically. Many other relevant references are cited in Niemela & Sreenivasan
(2003a).

2. The apparatus
The apparatus is essentially the same as that described earlier in Niemela et al.

(2000). It was a cylinder of 50 cm diameter, with the height reduced to 12.5 cm, giving
the aspect ratio Γ = 4. The stainless steel sidewall had a thickness of 0.267 cm. The
top and bottom plates were made of copper annealed under oxygen-free conditions
and 3.8 cm in thickness, with thermal conductivity of the order of 1 kWm−1 K−1 at
the measurement temperature. Special efforts were made to heat the plates uniformly,
using distributed thin film heater elements. At the bottom plate a constant heat
flux was applied, but measurements were initiated only after the resulting plate
temperatures reached steady values. Waiting times varied from several hundred to
105 cycles of the large-scale circulation, or the mean wind. We have not observed any
of the long-term transients reported recently by Chilla et al. (2004). The convection
cell was insulated by three outer thermal shields at various graded temperatures,
residing in a common vacuum space.

The working fluid was helium gas held at a temperature near 5K. The top plate
was linked to a helium bath serving as the cold reservoir, through an adjustable
gaseous helium thermal link. Its temperature was maintained constant by means of a
resistance bridge and servo.

3. Experimental results
3.1. Measured heat transport for aspect ratio 4

We measured the Nusselt number, Nu, where Nu is the ratio of the measured total heat
flux to that due to molecular conduction for the same �T and H . As in all previous
measurements, corrections were made for the small adiabatic temperature gradient
across the fluid depth (see Tritton 1988, appendix to chapter 14) and averaging
occurred over about 100 cycles of the mean wind. The experimental conditions and
the measured Nu are listed in table 1. Two additional corrections seemed necessary
to account for the unavoidable finite conductivity of the horizontal plates and the
heat leak up the sidewall. We have applied both corrections, as described in the
next section. We should point out that the corrections for finite conductivity of the
horizontal plates are smaller for cryogenic helium than for conventional fluids.
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Q (mW) �T (mK) TM (K) ρ (kg m−3) Ra Nu Nucorr Pr α�T

81.3 151.9 5.026 0.6536 1.10 × 108 34.94 32.78 0.69 0.031
126.2 212.2 5.056 0.6584 1.53 × 108 38.65 36.37 0.69 0.043
181.2 282 5.091 0.647 1.92 × 108 41.53 39.17 0.69 0.057
81.4 115.5 5.008 1.186 2.84 × 108 46.24 43.72 0.7 0.024

126.3 163 5.031 1.168 3.83 × 108 50.65 48 0.7 0.034
181.2 213.1 5.057 1.191 5.14 × 108 55.36 52.59 0.7 0.044
246.4 271.8 5.086 1.175 6.28 × 108 58.75 55.89 0.7 0.056
81.2 80.9 4.99 2.485 9.35 × 108 66 62.94 0.72 0.018

181.4 167.2 5.034 1.977 1.17 × 109 70.88 67.7 0.71 0.036
126.3 114.4 5.007 2.441 1.26 × 109 72.37 69.15 0.72 0.025
181.3 150.8 5.024 2.455 1.67 × 109 78.56 75.2 0.72 0.033
246.4 191.1 5.046 2.448 2.07 × 109 83.91 80.44 0.72 0.042
81.4 56.8 4.978 4.892 2.86 × 109 93.57 89.89 0.77 0.014

126.3 79 4.99 5.001 4.16 × 109 104.1 100.2 0.77 0.019
181.6 105.7 5.003 4.886 5.24 × 109 111.6 107.5 0.77 0.026
181.1 101 5.001 5.387 6.24 × 109 116.2 112.1 0.78 0.025
246.6 128 5.014 5.387 7.85 × 109 124.5 120.3 0.78 0.032
321.4 164 5.032 4.878 7.95 × 109 126.6 122.3 0.77 0.04
321.4 156.7 5.028 5.385 9.51 × 109 132.2 127.8 0.78 0.039
406.6 188 5.044 5.387 1.13 × 1010 139.0 134.5 0.78 0.046
81.4 35.2 4.968 11.16 1.28 × 1010 146.3 141.7 0.9 0.011

126.2 49 4.975 11.16 1.77 × 1010 162.5 157.7 0.9 0.016
181.3 65.2 4.983 11.17 2.35 × 1010 175.0 169.9 0.9 0.021
246.5 81.9 4.991 11.16 2.93 × 1010 189.0 183.8 0.9 0.026
321.3 100.3 5.000 11.16 3.57 × 1010 200.7 195.3 0.9 0.032
321.1 92.2 4.996 12.38 4.34 × 1010 216.6 211.0 0.93 0.031
406.4 110.3 5.005 12.38 5.15 × 1010 228.6 222.8 0.93 0.037
406.2 104.6 5.002 13.26 5.92 × 1010 239.6 233.7 0.95 0.037
406.5 94.2 4.997 15.13 7.80 × 1010 262.8 256.7 1.01 0.036
501.4 99.3 5.299 17.54 9.89 × 1010 286.5 280.4 1.04 0.038
605.7 116.2 5.458 17.54 1.02 × 1011 288.5 282.4 1.02 0.042
639.4 111.2 5.456 19.43 1.33 × 1011 313.4 307.1 1.07 0.043
501.5 82.2 5.291 21.14 1.50 × 1011 336.5 329.9 1.16 0.037
406.3 70 4.985 20.82 1.67 × 1011 338.2 331.4 1.22 0.037
500.8 74.7 5.187 23.07 2.08 × 1011 369.4 362.5 1.27 0.04
605.9 86.8 5.193 23.07 2.40 × 1011 384.0 377.0 1.26 0.046
501.1 61.8 5.281 27.47 3.10 × 1011 422.0 415.0 1.46 0.04
501.6 60.3 5.18 27.45 3.47 × 1011 439.4 432.2 1.51 0.042
691.6 79.8 5.29 27.46 3.96 × 1011 449.7 442.5 1.45 0.051
690.8 61.6 5.281 32.65 7.06 × 1011 551.8 544.4 1.84 0.055
501.1 39.9 5.295 36.66 8.61 × 1011 590.9 583.8 2.25 0.046
691.6 51.5 5.301 36.32 1.04 × 1012 632.2 625.1 2.19 0.057
846.9 59.7 5.605 39.92 1.06 × 1012 625.7 619.0 2.08 0.058
691.7 50.4 5.275 36.64 1.14 × 1012 645.8 638.7 2.28 0.059
981.3 67.5 5.609 39.89 1.18 × 1012 640.7 634.1 2.07 0.065
721.2 44.7 5.372 40.94 1.58 × 1012 716.2 709.8 2.64 0.062
721.2 42.7 5.281 40.88 1.20 × 1012 754.4 748.1 2.94 0.069
845.9 39.7 5.42 46.73 2.90 × 1012 883.9 879.7 3.4 0.074
912.2 42.2 5.421 46.73 3.07 × 1012 896.1 892.1 3.39 0.079
846.3 30.5 5.415 51.74 4.61 × 1012 1091 1091 4.46 0.078
846.3 28.1 5.414 53.31 5.25 × 1012 1165 1168 4.84 0.079
781.9 25.3 5.388 53.39 5.74 × 1012 1191 1195 5.25 0.079
721.0 18.4 5.269 53.53 1.15 × 1013 1467 1482 8.15 0.099
721.0 17.9 5.259 53.55 1.26 × 1013 1500 1517 8.59 0.103
721.2 12.3 5.256 57.87 2.48 × 1013 2021 2077 13.44 0.119
721.2 11.6 5.246 57.93 2.87 × 1013 2119 2184 14.72 0.125

Table 1. Experimental parameters from measurements with Γ = 4. TM is the mean
temperature of the cell. See text for definitions of the other parameters.
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3.2. Corrections

3.2.1. Finite conductivity of horizontal plates

As discussed by Verzicco (2004), the thermal conductivity of the horizontal plates
should be very large compared to that of the fluid in order for the plates to maintain
constant temperature even in the presence of large turbulent fluctuations. This
condition holds quite comfortably for the combination of cryogenic helium and plates
made of special copper. However, the effective conductivity of helium grows with Ra
because of turbulence and can become comparable to that of the plates at very high
Ra. The effect is that the plates cannot quickly recover their constant-temperature
condition as they would if the conductivity were infinitely large. The problem was also
briefly considered by Chaumat, Castaing & Chillà (2001) and by Hunt et al. (2003),
but the form appropriate to the present considerations was determined by Verzicco
(2004). Specifically, he wrote the Nusselt number for the infinitely conducting plates,
Nuinf, as

Nuinf = Nu/F (X), (3.1)

where X is the ratio of the effective thermal resistance of the fluid to that of the plate,
given by

X = Nu−1(kpH )/(kf e), (3.2)

e being the plate thickness; kp and kf are the thermal conductivities of the plate and
the fluid, respectively. The function F (X) is fitted by

F (X) = 1 − exp
[
−(X/4)1/3

]
X/(X − 2). (3.3)

Recently, Brown et al. (2005) have examined the problem experimentally using a
cylindrical cell with both copper and aluminium bounding plates. These authors,
however, could not obtain a sufficient collapse of their data using F (X) in the form
(3.3), and so suggested a slightly modified functional form

F (X) = 1 − exp[−(αX)β], (3.4)

with α = 0.275 and β =0.39. Considering that this empirical relation was obtained for
the same geometry as in our experiments, and also for aspect ratios larger than 1/2,
we adopt it here as the best available estimate for these plate effects. The maximum
deviation in the correction factor using the two forms of F (X) is 0.9 %, which could
therefore be considered a measure of the uncertainty introduced by this procedure.

The effects of these corrections are shown in figure 1 for aspect ratios 1/2, 1 and
4. The plates were identical for all cases and only the distance H between the plates
changed. Other factors being equal, smaller H results in smaller thermal resistance of
the fluid layer and hence in a smaller X for a given Ra. Numerical values of X are
shown in the inset. The corrections in all cases are negligible over most of the range
of Ra, the effect being measurable only over the last half a decade or so. Since the
conditions are also non-Boussinesq in this range (see below), we have tended to rely
less on those data, now as in the past.

3.2.2. Sidewall conduction

In conventional practice, the measured Nu is computed by subtracting from the total
vertical heat flux a contribution due to parallel conduction up the sidewall, assuming
the linear temperature gradient along its height to be �T/H . The gradient is more
complex in turbulent convection, and depends on the junction of the sidewalls and
the horizontal plates. This effect has been modelled by Roche (2001), Ahlers (2001),
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Figure 1. Ratio of Nuinf to the measured Nu for convection cells of three different aspect ratios.
Open squares, Γ = 1/2 (Niemela et al. 2000); open triangles, Γ =1 (Niemela & Sreenivasan
2003a); open circles, Γ = 4 (present). The inset shows the ratio of total thermal resistance of
the fluid layer to that of the plates.

Verzicco (2002) and Niemela & Sreenivasan (2003a). The numerical simulations of
Verzicco, for Γ =1/2, comparing simulations with perfectly insulating walls to those
having walls of finite conductivity, indicate that, in the latter case, the forcing of
the large-scale eddies is a predominant feature of the flow at low and moderate Ra,
and leads to a larger overall heat transfer than for perfectly insulated walls. Given
the complexity of the problem, it is not straightforward to extract the correction
for an aspect ratio different from the one for which studies have specifically been
made before. We use here a parameterization for extrapolating Nu to the limit of
perfectly insulating walls put forward by Roche (2001) (see, also, Roche et al. 2001),
because it has an explicit aspect ratio dependence, although it too is an approximate
parameterization.

3.3. The ‘corrected’ data

The corrections just described are at best plausible and must be taken with some
reserve. Fortunately, they are small for our data, which can be seen from table 1
by comparing the corrected Nusselt numbers, Nucorr, obtained by multiplying the
measured data by the two correction factors, one for each effect just described, with
the directly measured data.

The sidewall corrections are present only for relatively low Ra and their effect is
to lower the Nusselt numbers; those for finite conductivity of horizontal walls are
prevalent only for high Ra and their effect is to enhance the Nusselt numbers. The
cumulative effect is to increase the Nu–Ra slope compared to that for the uncorrected
data. To illustrate this effect, we note that without corrections, a simple least-squares
fit over the entire range of Ra for aspect ratio 1/2 (Niemela et al. 2000) gives a slope
of 0.31, while the corrected data possess an average slope of 0.32 over the same range
of Ra. These latter data are shown in figure 2 together with the fit. A similar plot for
aspect ratio 4 is shown as figure 3. Again, the effect of corrections is small. The inset
to figure 3 plots Nucorr normalized by the one-third power of Ra. Clearly, there is a
region of about 2 decades of Ra where Nucorr is proportional roughly to Ra1/3. The
exponent can be inferred to be just barely higher than 1/3, being 0.34 over the range
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Figure 2. The heat transfer results for Γ =1/2 ‘corrected’ here for sidewall leak and finite
conductivity of horizontal plates. A linear least-square fit through the corrected data gives
Nu =0.088Ra0.32, compared with Nu = 0.124Ra0.31 for the directly measured Nu (Niemela et al.
2000).
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Figure 3. Nucorr versus Ra for the present data (Γ = 4), adjusted for the effects of sidewall
and horizontal plates. Also shown are recent results of Funfschilling et al. (2005) for aspect
ratio 3, similarly corrected. The inset shows the same Nucorr data normalized by Ra1/3.

of 1010 < Ra < 1012, with the corrections described above raising the slope over the
uncorrected data, which have a slope of more precisely 1/3. For the data falling in the
range 108 <Ra < 1010 the local log–log slope is nearly constant giving an exponent
of 0.31. Both the constancy of the log–log slope with increasing Ra and its numerical
value are in good agreement with predictions of Grossmann & Lohse (2002) in this
range of Ra and for unity Pr (see their figure 4b). While the theory also predicts
a saturation of the local exponent to 1/3 at higher Ra, it occurs more slowly than
is observed here. For comparison, we also show recent results of Funfschilling et al.
(2005) also corrected for sidewall and end-plate effects. These data were obtained for
Γ =3 and Pr =4.38, and accessed a limited range of Ra.

For Ra > 3 × 1012 the slope of the Nu–Ra curve increases significantly, as can be
seen better in the inset to figure 3. However, it is precisely in this region of Ra
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Figure 4. The power spectral density (PSD), for Ra= 1.9 × 109, for temperature fluctuations
measured (a) at the horizontal midplane of the apparatus along the sidewall and (b) in the
centre. The peak in the sidewall data, labelled fp , indicates the advection of plumes by a
large-scale coherent wind. The broad and weak peak in (b) is roughly centred at fp/4.

that conditions are not strictly Boussinesq,† as discussed in Niemela & Sreenivasan
(2003a). We note that nearness to the critical state, which occurs at the highest
Ra, indirectly may have important consequences for the heat transfer, as discussed
in Niemela & Sreenivasan (2006). The near-critical state is also accompanied by a
significant increase in Pr. Given our incomplete understanding of these effects, any
definitive statement about the asymptotic power law, especially that approaching the
value predicted by Kraichnan (1962), seems unjustified. As in Niemela & Sreenivasan
(2003a), we err on the side of caution and do not draw major conclusions on that
particular aspect. It is indeed possible that this increase in slope is genuine, but we do
not know enough at present to be certain. A more detailed treatment of this feature
of turbulent convection can be found in Niemela & Sreenivasan (2005).

3.4. Temperature fluctuations and scaling

We now turn to temperature fluctuations within the convection cell. Figure 4(a)
shows the power spectral density (PSD) for Ra = 1.9 × 109 at a point 4 cm inboard
of the sidewall in the central horizontal plane; figure 4(b) is for the cell centre. Near
the sidewall the plumes are advected by the mean wind (see e.g. Wu 1991; Cioni,

† The usual parameters characterizing non-Boussinesq effects became significant only for
Ra > 1015 for the Γ = 1/2 data of Niemela et al. (2000) and for Ra> 1014 for the Γ = 1 data
of Niemela & Sreenivasan (2003a), where these details are discussed fully. For the helium data of
Chavanne et al. (2001) and Roche (2001), these effects occurred at much lower Ra.
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Figure 5. ω̃∗ vs. Ra for various experiments Γ � 1 and Prandtl number � 0.7. Open circles,
present data, Γ = 4; solid squares, Niemela et al. (2001), Γ =1; open triangles, Wu (1991),
Γ = 1. Inset: Conventionally defined ω̃ versus Ra for the same data sets, showing collapse
only for the same aspect ratio. The line with slope 0.465 is the least-squares fit to the present
data for Γ = 1, 4. After converting the dimensionless frequencies to a Reynolds number Ref

(see text) we obtain Ref Pr2/3 = 0.44Ra0.45 (see (3.7)), whereas the scaling of the dimensionless

frequency ω̃∗ gives ω̃∗ =0.95Ra0.465.

Ciliberto & Sommeria 1997; Niemela et al. 2001; Qui & Tong 2001; Sreenivasan,
Bershadskii & Niemela 2002), which results in a prominent peak in the PSD, here
at about fp = 0.033 Hz. No such periodic feature exists for the other spectrum,
corresponding to measurements at the centre, indicating the absence of plume
advection by the coherent mean wind. These results are consistent with the early
work of Krishnamurti & Howard (1981) for large aspect ratio and for considerably
smaller Ra. We note, however, that there appears to be a broadened peak for the
centre PSD at the frequency fp/4. This could be due to a sloshing mode similar to
that discussed by Sun, Xia & Tong (2005).

To make comparisons with data from other sources, it is customary to consider
the dimensionless circular frequency ω̃ = ωpH 2/κ ≡ 2πfpH 2/κ , using the vertical
diffusion time as the scaling variable. The quantity ω̃ is related to the advection rate
for plumes – and hence can be related to the Reynolds number of the wind, which
in turn is known to have a significant Prandtl number dependence (see figure 17 in
Niemela & Sreenivasan 2003a). For constant Pr, we might expect to see a collapse
of the data for various experiments. This does not happen, however, as shown in the
inset to figure 5: while the data of Wu (1991) and Niemela et al. (2001) for Γ = 1
collapse well using this standard normalization, the present results for Γ =4 fall
considerably below. We surmize that a length scale different from the vertical height
is appropriate for scaling ω̃. If a single coherent mean wind encompasses the entire
container† we may expect that the horizontal dimension might also be important for
scaling. From what we know of the wind we can choose (half) the perimeter of the

† This is in contrast to the situation at the onset of convection, where the individual rolls are
roughly square in cross-section and scale with the vertical distance between the horizontal plates.
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apparatus in section, namely H + D, or alternatively, considering the tilted nature of
the wind (Qui & Tong 2001; Niemela & Sreenivasan 2003b; Xia, Sun & Zhou 2003),
choose the ‘diagonal’ measure of the container defined as

ξ = (H 2 + D2)1/2. (3.5)

Using the latter we write a new dimensionless representation ω̃∗ of the plume advection
frequency, for fixed Pr, as

ω̃∗ = ωp ξH/κ = ω̃ [1 + Γ 2]1/2. (3.6)

We show in figure 5 the collapse of the data using this scaling. The perimeter works
almost as well as the diagonal. If the wind followed the walls closely, the perimeter
would seem to be relevant scale, while if it were tilted along the diagonal, the relevant
scale would be ξ . The evolution of the wind from one shape to the other has been
discussed in Niemela & Sreenivasan (2003b) and Xia et al. (2003). Unfortunately, the
range of Ra used in figure 5 is unable to establish the superiority of one scale over the
other. This suggests that, on the average, the wind probably possesses an in-between
orientation and evolves rather slowly for the range of Ra covered here.

In general, neither normalization can be expected to work for aspect ratios far
below unity because the flow may then admit stacked cells which alters the scaling.

We can also define a quantity that is related to a Reynolds number (see e.g.
Niemela et al. 2001; Qui & Tong 2001; Lam et al. 2002), namely Re∗

f = (1/π)ω̃∗Pr−1.
A least-squares fit to the data gives

Re∗
f Pr2/3 = 0.44Ra0.453. (3.7)

This scaling of the Γ -independent Re∗
f is in excellent agreement with the predicted

scaling of the Reynolds number Re ∼ Ra4/9Pr−2/3 in the Pr–Ra phase space region
IVu of Grossmann & Lohse (2001) and with similar experimental results of Qui &
Tong (2001) and those of Lam et al. (2002). We note that choosing the empirical
Pr−0.76 dependence of the latter authors does not change the result significantly,
giving Re∗

f = 0.39Ra0.456Pr−0.76. We cannot resolve any Ra-dependence of the Pr-
exponent but note that this dependence is negligible in the theoretical results for Pr
of order unity (see figure 4a of Grossmann & Lohse 2002), as in the experiments.
The least-squares fit to the ω̃∗ data gives ω̃∗ = 0.95Ra0.465.

Finally, we illustrate in figure 6 the nature of correlations between sensor pairs for
temperature sensors placed the same distance from the sidewall on opposite ends of a
diameter (i.e. separated azimuthally by π radians) and that between a sidewall sensor
and one centred at the midpoint of the cell. In figure 6(a), both such correlations are
shown for Ra =3.1 × 109, i.e. in the region of logNu–logRa slope 0.31. It is clear that
there is a strong long-time correlation between opposite sidewall sensors, indicative
of a well ordered and robust mean wind, while no clear correlation exists between
the sidewall fluctuations and those of the centre. This corroborates the lack of any
strong mean wind in the centre. Figure 6(b) shows the same correlations for a higher
Ra =6.5 × 1011, well into the region of approximate logNu–logRa slope 1/3. Here,
it can be appreciated that there is no correlation between any set of temperature
signals, indicating that the mean wind is no longer coherent over the entire container.
We point out here that this latter observation is consistent with the assumption of
uncoupled boundary layers from which a 1/3 power-law exponent naturally derives
(see e.g. Howard 1966).
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Figure 6. (a) Cross-correlation of temperatures for Ra=3.1 × 109. Solid line, correlation
between sidewall temperatures at the midplane but at opposite ends of a cell diameter; dashed
line, correlation between a sidewall temperature and that at the centre of the cell. (b) Similar
cross-correlation of temperatures for Ra=6.5 × 1011.

4. Concluding remarks
We have reported heat transfer and temperature fluctuation data for aspect ratio 4

with Ra up to 2 × 1013. For 108 <Ra < 1010, the logNu–logRa slope is nearly constant
and of magnitude 0.31. For higher Ra it saturates at around 1/3 in the range of Ra
for which the Boussinesq limit is valid strictly, as in Niemela & Sreenivasan (2003a),
and in recent experiments by Nikolaenko et al. (2005). The corrected data suggest
a marginally higher slope than 1/3, namely 0.34, but these corrections are at best
approximate – and fortunately relatively small – so we do not give special significance
to this slight difference. The increase in slope for higher Ra is less subtle, but the
possible non-Boussinesq effects and the Pr variations in that range of Ra prevent us
from drawing serious conclusions. In fact, we prefer to remain on the side of caution,
and do not wish to comment on the claims of Chavanne et al. (2001), who used data
in the region of strong non-Boussinesq effects and Pr-variations to infer an approach
to the 1/2 power.

Finally, the peak in the temperature fluctuation spectrum measured near the
sidewall, corresponding to plume advection by the coherent mean wind, scales well in
experiments with different aspect ratios if a diagonal measure of the cell is considered
as the characteristic length scale. Using the perimeter as the scale also works nearly
as well. This ambiguity is consistent with our understanding of the wind as generally



Turbulent convection at high Rayleigh numbers and aspect ratio 4 421

tilted but slowly evolving to a squarish shape at higher Ra (Niemela & Sreenivasan
2003b; Xia et al. 2003). Either scaling reinforces the notion of a single, coherent
mean wind that, on the average, encompasses the entire container. At very high Ra,
however, the mean wind can no longer be considered coherent over the container
as indicated by a lack of long-time correlation between opposite sidewall sensors.
This is the Ra-range where the power law is closely 1/3. Finally, a Γ -independent
Reynolds number based on the frequency peak in the power spectral density of the
mean wind is in excellent agreement with the theoretical predictions of Grossmann
& Lohse (2001, 2002).

We thank the Elettra Synchrotron Light Laboratory, Trieste, for providing labor-
atory space, and the National Science Foundation grant DMR 0202554 for support
in the construction of the apparatus.
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